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Abstract
This article investigates the economic impacts of changes in climatic conditions
on Vietnamese agriculture. We apply the two-step Hsiao method to a 10-year
panel of household data which focuses on the production of 20 crops across
seven regions in Vietnam. This study allows for variablemarket feedbacks across
regions that grow different selections of crops. In this way, our article differs
from most panel Ricardian analyses which assume uniform market shocks on
households. Our analysis also includes climate interactions to allow the effects
of temperatures to be dependent on the levels of rainfall. Panel evidence from
the Ricardian model suggests heterogeneous climate impacts across seasons and
regions. Rising seasonal temperatures are associated with losses to most regions,
with spring temperatures being the exception. Increases in summer precipita-
tion are valuable to mitigate the negative effects of rising temperatures. Changes
in climate normal should not be the focus of policymakers since the simulation
indicates marginal losses to agricultural productivity, both in the short term and
the long term. Regions with cool climates are likely to be most affected by the
projected climate change.
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1 INTRODUCTION

Vietnam represents an interesting case for assessing the
impact of climate change. The country is characterized by
highly heterogeneous climatic conditions, and researchers
expect Vietnam to be among the countries hit hardest
by climate change (Dasgupta et al., 2009). The long nar-
row shape of the country and its diverse typological con-
ditions has resulted in seven climate regions where dif-
ferent selections of crops are grown. A report by the
Ministry of Natural Resources and Environment (Min-
istry of Natural Resources and Environment, 2009) indi-

cates changes in climate patterns are not uniform. The
report predicts that temperatures across the country will
increase faster in autumn and winter. The northern region
of the country will experience a shortage of rainfall in
spring, and the southern region will suffer from lower pre-
cipitation during winter and spring. Researchers believe
the likely consequences of changing climatic conditions
are serious and threaten hunger eradication, poverty
reduction, and sustainable development (Dasgupta et al.,
2009; Trinh, 2018). Therefore, assessing the impact of
climate change in Vietnam is important for adaptation
policy.
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38 NGUYEN and SCRIMGEOUR

Although the literature on climate impact is vast, little is
known about how Vietnamese agriculture will be affected.
The simulation by Trinh (2018) presents significant losses
due to non-marginal changes in long-term climate nor-
mal. Unfortunately, the estimated impacts of climate on
Vietnamese agriculture are prone to several sources of
bias, which could limit the insights. First, although the
model allows market shocks to have effects on agricul-
ture, Trinh hypothesized price effects to be homogeneous
across regions. Given the high heterogeneity in crop choice
across regions, not allowing for heterogeneous price feed-
backs across regions leads to biased estimates. Second,
the assumption of additive separability of temperature and
precipitation effects ismisleading (Fezzi &Bateman, 2015),
such that the estimated temperature effects also include
the confounding effects of rainfall.
This Ricardian analysis for Vietnam uses a 10-year

panel of household data on production of 20 crops across
seven regions.We extract high-resolution climatic and geo-
graphic data to match with the location of households.
We test for stability of climate effects to justify the use of
time-mean residuals in a two-step Hsiao method devel-
oped by Massetti and Mendelsohn (2011). In contrast to
previous analysis assuming uniform market shocks, our
analysis allows variable market feedbacks on regions with
different selections of crops. In line with plant physiology
(Monteith, 1977; Morison, 1996), our Ricardian analysis
allows the relationship between temperature and precip-
itation to be mutually dependent.
Our findings show that while assuming uniform effects

of exogenous market feedbacks produces marginal biases,
the consequences of omitting climate interactions are
severe when estimating climate impacts. Vietnamese
agriculture is shown to be more sensitive to changes in
temperature than changes in precipitation. Rising seasonal
temperatures are associated with losses in most regions.
Rising precipitation is beneficial in hot summers. Our
simulation of climate impacts indicates marginal losses
to agricultural productivity, with net losses ranging from
.02% to 2.6% between 2030 and 2100. Regions currently
with cool climates, such as the Central Highlands and the
Northwest, are expected to be affected the most.

2 LITERATURE REVIEW

Agriculture is arguably the sector most affected by cli-
mate change as it is directly exposed to climate elements
(Rosenzweig et al., 2014). The projected impacts are severe
for developing countries where agriculture directly sup-
ports the livelihood of a large proportion of the popula-
tion and they have limited adaptive capacity. Estimated
climate impacts on agricultural productivity are, however,

subject to uncertainty, even for the same region under sim-
ilar scenarios of global warming. For instance, Schlenker
and Roberts (2009) projected large decreases in crop yields
for U.S. crops while Deschênes and Greenstone (2012) esti-
mated small losses in agricultural profits. Deschênes and
Greenstone (2012) attributed this difference in estimated
impacts to the difference in the outputmeasured, contend-
ing the important role of adaptation in mitigating climate
impacts.
There have been two main approaches to assessing cli-

mate impacts on agriculture: the agroeconomic approach,
and the Ricardian (hedonic) climate models. Agroeco-
nomic analyses control for factors associated with crop
yields such that researchers can ideally isolate the effects
of climate on crop growth and yield. Ewert et al. (2014)
and Antle and Stöckle (2017) presented in-depth reviews of
this approach. Themain argument regarding this approach
is that this method does not allow for actual adaptation
taken by farmers to be measured in its outcome. The lit-
erature on climate change adaptation shows that farmers
around the world have adopted different adaptation strate-
gies. These include short-term climate-smart agriculture
practices such as changes in sowing date, input mix, crop
rotation, crop diversification, and improving irrigation effi-
ciency (Abdulai, 2018; Bradshaw et al., 2004; Mall et al.,
2004; Shahzad & Abdulai, 2021). Long-term adaptations
can be achieved by crop substitution (Rezaei et al., 2015;
Seo & Mendelsohn, 2008), or bundling agricultural tech-
nologies (Fleischer et al., 2011). Therefore, the agroeco-
nomic approach tends to overstate negative impacts (Blanc
& Reilly, 2017). Mendelsohn et al. (1994) termed this as the
“dumb farmer scenario.” In addition, the use of projections
from this approach is limited due to the fact that the con-
trolled variables used in agroeconomic analyses do not rep-
resent the diverse conditions of agricultural production.
The Ricardian model uses statistical tools to estimate

relationships between climate and agricultural productiv-
ity. The model was first developed by Mendelsohn et al.
(1994) based on a basic assumption that in a competitive
market, land values reflect net productivity. Within this
approach, adaptations are embedded in the information
collected regarding farmers’ behavior (Adams, 1999),
which is the main difference between this approach and
the agroeconomic models. Assuming a farmer is looking
to maximize income from his farm given the exogenous
variables that are beyond his control, the farmer would
choose a different crop or different inputs if the exogenous
variables change. Looking across an array of climatic
conditions, there would be different crops chosen in
each climate and different inputs applied (Mendelsohn &
Massetti, 2017). Therefore, the profit-maximizing out-
comes that the Ricardian model estimates incorporate
long-term adaptation taken by farmers.
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NGUYEN and SCRIMGEOUR 39

The Ricardian model has been applied to quantify eco-
nomic impacts of climate change in a large number of
countries across continents (see Mendelsohn & Massetti,
2017; for more details about these analyses). Most of these
studies estimate relationships between climate and agri-
cultural productivity using cross-sectional data. The poten-
tially omitted variable problem is a well-known issue asso-
ciated with cross-sectional analyses (Blanc & Reilly, 2017;
Fezzi & Bateman, 2015). Panel Ricardian models allow
the use of location fixed-effects and time fixed-effects to
account for potential omitted variables associated with
unobserved time-invariant factors and common shocks,
respectively. Another advantage of panel Ricardianmodels
is the ability to test for the stability of climate effects over
time for climate impact simulation. The standard assump-
tion underpinning climate impact simulation is that cli-
mate is the only variable that changes over time. This is a
restrictive assumption that assumes no future changes in
agricultural technology that affects either agricultural pro-
ductivity or adaptation capacity. Therefore, the estimated
negative impacts should be regarded as the upper bound
of climate impacts. However, this enables researchers to
detect the likely changes in agricultural income that are
attributable to climate change.
Panel Ricardian analyses, including Fezzi and Bate-

man (2015), Massetti and Mendelsohn (2011), Schlenker
and Roberts (2009), Trinh (2018), and Deschenes and
Greenstone (2007) detect the likely impacts of climate
change against the backdrop of possible changes in global
agricultural markets by the inclusion of time fixed-effects.
The underlying assumption made by this approach is that
the time fixed-effects capture the common shocks exoge-
nous to climate. The estimated climate impacts are still
subject to potential biases if time fixed-effects capture any
confounding effects of climate through climate-induced
price change.
Ignoring interactions between climate temperature and

precipitation can result in biased estimates of climate vari-
ables, however, few Ricardian analyses address this. Mon-
teith (1977) andMorison (1996), among others, have shown
the significance of interactions between temperature and
precipitation on crop growth. Surprisingly, most Ricar-
dian analyses do not document such interaction but rather
assume the impact of temperature and precipitation to be
additively separable. Fezzi and Bateman (2015),Wang et al.
(2009), and Schlenker and Roberts (2009) documented sig-
nificant interactions between climates indicating potential
bias in Ricardian analyses which assume the additive sep-
arability of climate phenomena.
We use a panel Ricardian model to measure the long-

term impacts of climate change on Vietnamese agricul-
ture. The 10-year panel evidence suggests constant climate
effects in the period studied justifying the robustness of

estimated climate impacts to time-varying confounders.
In contrast to previous panel Ricardian analyses assum-
ing uniform effects on households of external changes, we
allow these changes to have different effects on households
in different regions. This analysis also relaxes the assump-
tion on the additive separability of temperature and precip-
itation to avoid the confounding effects of rising tempera-
tures. We show in this article that while the likely biases
resulted from assuming uniform changes in external con-
ditions are negligible, the consequences of assuming the
additive separability of climates are severe when estimat-
ing climate impacts for Vietnam.

3 RESEARCHMETHODOLOGY

3.1 The Ricardian model for valuing
economic impact of climate change

The basic hypothesis of the climate impact assessment
is that climate shifts the production function for crops.
The intuition of the Ricardian model is as follows: if
future climatic conditions in location A were analogous to
the current climate in location B, then the future behav-
ior of farmers in location A would resemble the current
behavior of farmers in location B, ceteris paribus. There-
fore, information on agricultural production from cross-
sections includes the implicit value of climate change. The
Ricardian model assumes the farmer is always looking to
maximize production income, subject to a set of exogenous
conditions of his or her farm. This approach estimates the
overall value of each driving factor by specifying the hedo-
nic, reduced form model:

𝑀𝑎𝑥 𝜋 = 𝑃𝑖𝑄𝑖 (𝐾𝑖, 𝐸𝑖 ) − 𝑇𝐶𝑖 (𝑄𝑖, 𝑊, 𝐸) (1)

where л is net crop incomewhich is the difference between
revenue (PQ) and cost (TC) per unit of farmland. Pi is the
market price of crop i,Qi is the production function of crop
i, Ki is a vector of production inputs other than land, Ei is a
vector of exogenous environmental factors such as climate
and geographic conditions. The relationship between cli-
mate and production function is expected to be quadratic
(Criddle et al., 1997; Körner, 2006) such that the Ricardian
model includes square terms of climate variables. Because
the dependent variable is net crop income the Ricardian
model takes into account adjustment cost pertaining to
adaptation in terms of crop switching.
The Ricardian model defined by Equation (1) is a locus

of most profitable crops. It is estimated across crops and
inputs under different climatic conditions (Wang et al.,
2009). Under the assumption of full adaptation given cli-
mate, net crop income or land value has attained the
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40 NGUYEN and SCRIMGEOUR

long-run equilibrium that contains information on the eco-
nomic impact of climate change.
For a simpler illustration, we group independent vari-

ables into: a vector of time-varying variables X, a vector
of time-invariant control variables Z, and a vector of cli-
mate variables C which are long-term averages of weather
(Romm, 2018) and their square terms.When data are avail-
able for different years, one can use the repeated cross-
sections to estimate the following Ricardian model in any
year for which data are available:

𝑉𝑖𝑡 = 𝑋𝑖𝑡𝛽𝑡 + 𝑍𝑖𝛾𝑡 + 𝐶𝑖𝜑𝑡 + 𝑢𝑖𝑡 (2)

This is equivalent to estimating a pooled Ricardian
model with a set of time dummies and their interactions
with climate variables. In the above equation, the esti-
mated coefficients are allowed to vary over time. Climate
change is a long-term trend. Different estimates of climate
impact for different years seem not to be relevant (Mas-
setti & Mendelsohn, 2011). Therefore, the correctly speci-
fied Ricardian model using repeated cross-sections is:

𝑉𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝑍𝑖𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖𝑡 (3)

Because the Ricardian model measures long-run
impacts of climate, a single-stage fixed-effects method
is not appropriate since there is no variation in climate
variables. Therefore, the Ricardian model for panel data
can be estimated in twoways. One is to pool the entire data
set to estimate a single stage using the above equation. The
second way is to apply the Hsiao two-step method devel-
oped by Massetti and Mendelsohn (2011). Researchers
prefer the Hsiao method because the fixed-effects esti-
mates of time-varying variables are robust to omitted
(time-invariant) variables at the household level (Blanc &
Schlenker, 2017). The details of the Hsiao two-step method
are as follows:

3.2 The two-step Hsiao method for the
panel Ricardian model

In the first step, net crop income or land value is regressed
on time-varying variables using a fixed-effects method:

𝑉𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝜀𝑖𝑡 (4)

where εit is the resulting error term.
In the second step, the time-mean residuals (sim-

ple residuals plus fixed effects) obtained from the first
step are regressed upon climate and other time-invariant
controls:

𝑉𝑖 − 𝑋𝑖 𝛽 = 𝑍𝑖 𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖 (5)

While the estimated coefficients for time-varying vari-
ables in Equation (4) are robust to omitted time-invariant
factors, the estimated climate impacts using Equation (5)
are still prone to unobserved heterogeneity. Differences
across regions in terms of soil properties and climate
may lead to systematic differences in crop choice and
productivity. Variations in global agricultural markets can
be associated with changes in agricultural incomes. Panel
Ricardian models can control for those potential omitted
variable problems by using two-way fixed-effects (Blanc &
Reilly, 2017). The estimation of Equation (5) can include
a set of regional dummies to account for unobserved
time-invariant heterogeneity across regions. To account
for potential omitted time-varying factors, one can include
in their regression a set of time dummies to capture
common shocks which can affect agricultural income.

3.3 Methodology considerations

Using two-way fixed-effects can (partly) control for omit-
ted heterogeneity when estimating climate impacts. Panel
Ricardian estimates are still subject to biases from time-
varying confounders if unobserved time-varying factors are
associated with climate. In a long-run panel, there may
exist price adjustments to climate change. In this case,
the use of time fixed effects is problematic because they
are endogenous in the Ricardian model. A simple way to
test for the stability of climate effects is to introduce to
themodel interactions between time dummies and climate
(Massetti & Mendelsohn, 2011). The test for stability of cli-
mate impacts is simply a test on the joint insignificance of
the coefficients associated with time-climate interactions.
If the null hypothesis is not rejected, confounding effects
of unobserved time-varying factors are not a major con-
cern. The subsequent Ricardianmodel can be re-estimated
without time-climate interactions and the use of time-
mean residuals in the second step of the Hsiao method is
relevant.
Our Ricardian analysis implicitly models long-term

adaptation in terms of crop choice such that farmers in
different climatic conditions grow different selections of
crops. Agricultural commodities may react differently to
market variations. Failing to address heterogeneous price
change effects is therefore expected to produce biases
to climate and/or other time-invariant controls in Equa-
tion (5). A general approach to introduce heterogeneous
price feedbacks is to include a set of interactions between
regional dummies and time dummies. If the test for the
compound hypothesis that all coefficients associated with
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NGUYEN and SCRIMGEOUR 41

interactions between time and regional dummies are equal
is not rejected, then the Ricardian model can be re-
estimated without these interactions.

4 EMPIRICALMODEL AND DATA

4.1 Empirical Ricardian model

This analysis uses a 10-year panel of farm-level data which
allows us to use two-way fixed-effects to better control
for omitted variable problems. Following Van Passel et al.
(2017), this analysis uses the log of net crop income as
the dependent variable as it has more predictive power
compared to the linear model. Some of the independent
variables are also in natural logarithm form. Seasonal
temperatures and rainfalls are introduced to the model
to capture seasonal effects (Van Passel et al., 2017). We
relax the assumption of the additive separability of climate
effects through the inclusion of interactions between
temperature and precipitation, allowing the effects of
temperature and precipitation to be mutually dependent.
We first justify the use of the two-step Hsiao method by

estimating Equation (2) using the following pooled model:

𝑙𝑛 𝑉𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝑍𝑖𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖𝑡 (6)

Equation (6) includes a set of interactions between time
dummies and climate variables. We use the Likelihood
Ratio test (LR) to test for stability of climate impacts under
the null hypothesis that all coefficients associated with
time and climate interactions jointly equal zero. The LR
test has an F-statistic of 1.52 and a P-value of .07. We fail
to reject the null hypothesis that climate impacts are con-
sistent overtime at the 5% level. Our climate estimates
are, therefore, expected to be free from time-varying con-
founders. The LR test also lends itself to the application of
the time-mean residuals using the two-step Hsiao method
described in the methodology section.
Next, we estimate the first step of the Hsiao method

using fixed-effect estimators:

𝑙𝑛𝑉𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝜀𝑖𝑡 (7)

Then, the time-mean residuals (simple residuals plus
fixed effects) obtained from Equation (7) are regressed
upon climate and other time-invariant controls:

𝑙𝑛𝑉𝑖 − 𝑋𝑖 𝛽 = 𝑍𝑖 𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖 (8)

with interactions between time dummies and climate vari-
ables being excluded.

Vietnam’s long narrow shape of the country and the
complex typology results in seven climate zones. The long-
term adaptation taken by farmers in terms of crop choice
has resulted in different crop selections across regions
(Nguyen, 2017). We capture potential differentiated price
effects through the inclusion of interactions between time
and regional dummies. Our Ricardianmodel in the second
step of the Hsiao method takes the following form:

𝑙𝑛𝑉𝑖 − 𝑋𝑖 𝛽 = 𝛼 + 𝛿 ∗ 𝐸 + 𝛾 ∗ 𝑅 + 𝜏 ∗ 𝐷 + 𝜇 ∗ 𝑅 ∗ 𝐷

+ 𝛾1 ∗ 𝑇 + 𝛾2 ∗ 𝑇
2 + 𝛾3 ∗ 𝑃 + 𝛾4 ∗ 𝑃

2

+ 𝛾5 ∗ 𝑇 ∗ 𝑃 + 𝑢𝑖 (9)

where E represents elevation, R a vector of regional dum-
mies, D a vector of time dummies, R*D a vector of interac-
tions between time and regional dummies used to capture
heterogeneous price feedbacks across regions, T a vector of
four seasonal temperatures, P a vector of four seasonal pre-
cipitations, T*P a vector of interactions between tempera-
tures and precipitations,𝑢𝑖 an error termwhich is assumed
not to be correlated with climate.
The marginal impact of seasonal temperatures on agri-

cultural income is calculated using the following equation:

𝜕𝑙𝑛𝑉𝑖
𝜕𝑇

= 𝛾1 + 2 ∗ 𝛾2 ∗ 𝑇 + 𝛾5 ∗ 𝑃 (10)

In addition, the marginal impact of seasonal precipita-
tions on agricultural income is:

𝜕𝑙𝑛𝑉𝑖
𝜕𝑃

= 𝛾3 + 2 ∗ 𝛾4 ∗ 𝑇 + 𝛾5 ∗ 𝑇 (11)

Because the dependent variable is in log form, the esti-
mated marginal effects using Equations (10) and (11) are
interpreted as percentage change in agricultural income
due to one unit change in the corresponding climate
variable. The estimation of Equation (9) uses house-
hold farmland as weights for two reasons. First, esti-
mates of climate change from households with large
crop production are more precise than from house-
holds with small production. Second, using farm size as
weights can correct for heteroscedasticity (Deschenes &
Greenstone, 2007) which is problematic in econometric
modeling.

4.2 Data

This analysis uses the nationally representative
survey data from the Vietnam Access to Resources
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42 NGUYEN and SCRIMGEOUR

Household Surveys (VARHS). These datasets contain rich
information on income activities from production of 20
crops across seven regions. The Probabilistic Data Record
Linkage method applied to these datasets produces a
10-year unbalanced panel of 2340 households or 8356 year-
households. Following Wang et al. (2009) and Seo et al.
(2009), this study uses net crop income per square meter
as a proxy for land value in Equations 2–11. Household
self-consumed products are evaluated at market prices. To
ensure comparability, economic variables are converted to
constant 2010 VND.
The climate data were derived from Worldclim version

2.0 (Fick & Hijmans, 2017) and have a high resolution of
one square kilometer. Because we use climate data with
high resolution, the matching between climate and house-
hold location results in a low probability ofmismatch. This
study uses seasonal averages of temperature and rainfall
for the period 1970–2000 based on the season classifica-
tion of the Ministry of Natural Resources and Environ-
ment (Ministry of Natural Resources and Environment,
2009) to support the identification of heterogeneous cli-
mate impacts. Climate and agricultural production may
vary across latitudes (Mendelsohn et al., 1994). We extract
data on elevation with the same resolution using free spa-
tial data from the DIVA-GIS website.
Rising population may create pressure to use land effi-

ciently (Mendelsohn et al., 1994). Increases in agricul-
tural wages may be associated with higher opportunity
costs for family labor and higher hired labor costs. The
VARHS surveys on the commune level represent a rich
set of data on agricultural wages. The wage data are com-
bined with household data by applying the same Proba-
bilistic Data Record Linkage method. Data on population
density come fromVietnamGovernment Statistical Office.
Table 1 presents a brief definition of the variables while
Table 2 provides the regional averages of the data used.
The data description highlights the heterogeneity of cli-
mate and socio-economic conditions which are hypothe-
sized to have impacts on agricultural performance across
regions.

5 ESTIMATION RESULTS

5.1 Hsiao estimation of step 1—Effects
of time-varying factors on agricultural
productivity

We used a fixed-effects method to estimate Equation 7.
Household production can be correlated over time as the
households exhibit unobserved time-constant character-
istics. We take potential serial correlation in household’s
agricultural performance into account by clustering the

errors by household. Table 3 presents the estimates for
time-varying variables. Most of the coefficients are statis-
tically significant at 5% indicating the relevance of most
variables in explaining variations in agricultural income.
Increases in population are positively associatedwith land-
use efficiency due to the pressure of lowering per capita
farming areas.
Household size and education positively correlate with

agricultural performance. There exists an inverse relation-
ship between farm size and productivity which is consis-
tent with the literature (Barrett et al., 2010; Feder, 1985;
Helfand & Taylor, 2020). A one percentage point increase
in farm size is associated with roughly a .5% decrease in
income per square meter. As expected, increases in irri-
gation coverage are associated with higher agricultural
income. Land fragmentation, in contrast, is associatedwith
higher productivity. Our finding is contrary to the findings
for South Asian countries by Niroula and Thapa (2005),
and for Vietnam by Tran and Vu (2019). These analy-
ses attribute the negative effects of land fragmentation to
the disadvantages associated with higher production costs
and lower production efficiency. However, land fragmen-
tation is associated with crop diversification which is an
adaptation strategy to natural and economic shocks in the
Vietnam context (Nguyen et al., 2017).

5.2 Hsiao estimation of step 2—Impacts
of climate and other time-invariant
controls

Previous panel Ricardian models (Deschenes & Green-
stone, 2007; Fezzi & Bateman, 2015; Massetti & Mendel-
sohn, 2011; Schlenker&Roberts, 2009; Trinh, 2018) capture
changes in global agricultural markets as common shocks
to all households. However, variations in global commod-
ity prices are not uniform (Haile et al., 2016). We allow
for differentiated market shocks to farmers in regions that
growdifferent selections of crops by including a set of inter-
actions between time and regional dummies. The estima-
tion of step 2 of the Hsiao method also includes a set of
interactions between seasonal temperatures and precipita-
tions.Most coefficients of these interactions are significant
at the conventional level. We report in Table 4 hypothesis
tests to support our arguments before reporting the esti-
mates of step 2 using Equation (9).
The test results indicate heterogeneous price feedbacks

across regions as a result of inherent differences in farm-
ing structures and non-uniform changes in agricultural
commodity prices. The inclusion of interactions between
regional and time dummies are, therefore, expected to
improve the precision of regional impacts of climate. In
addition, the LR test on climate interactions strongly
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NGUYEN and SCRIMGEOUR 43

TABLE 1 Variable definitions

Variable Measurement
Dependent variable
income_meter (in log form) Net crop income per square meter

= (total output value evaluated at market price - total cost)/farmland
Thousand VND/square meter (2010 prices)

Household characteristics
hh_size Number of household members (persons)
head_sex Gender of household head, binary (1 =male)
head_edu Formal schooling of household head (years)
head_age Age of household head (years)
Extension_contact Number of extension contacts in the last two years (times)
Farmland characteristics
no_plots Number of separate farmland plots
farm_size Farm size (square meters)
irrigation % of farmland irrigated
Socio-economic characteristics
Wage (log) Thousand VND/ workday in agriculture (communal average)
Population density (log) Thousand persons/square kilometer
Topographic characteristics
Elevation Meters
Climate variables
Winter_tem Winter monthly temperature (Celsius degrees)
Spring_tem Spring monthly temperature (Celsius degrees)
Summer_tem Summer monthly temperature (Celsius degrees)
Autumn_tem Autumn monthly temperature (Celsius degrees)
Winter_pre Winter monthly precipitation (millimeters)
Spring_pre Spring monthly precipitation (millimeters)
Summer_pre Summer monthly precipitation (millimeters)
Autumn_pre Autumn monthly precipitation (millimeters)
Regional dummies Red River delta, Northeast, Northwest, Northern Central, Southern Central, Central

Highlands (Mekong River delta as reference)
Time dummies 2008, 2010, 2012, 2014, 2016 (2006 as reference)

rejects the null hypothesis on the additive separability of
climate. The inclusion of climate interactions is expected
to produce more accurate estimates of each climate phe-
nomenon. Table 5 contrasts the estimates for climate vari-
ables across assumptions on effects of price change and cli-
mate interactions.
The estimated coefficients of most climate variables

and their square terms are statistically significant in the
three models indicating nonlinear responses of agricul-
ture to climate. Once climate has been controlled for,
farms located in higher elevations tend to be less produc-
tive as the estimated coefficient for elevation is negative
(−.002). The sign and statistical significance of variables
do not change substantially across the first two models
under the alternative assumptions onmarket shocks.How-
ever, the assumption of homogenous market shocks in

Model (2) produces relatively larger estimates for most cli-
mate variables indicating potential overstatements of cli-
mate impacts due to confounding effects between external
changes and regional farming systems.
We find the effects of rising temperature are depen-

dent on the levels of rainfall in the four seasons.
Figure 1 illustrates interactions between climate elements.
Rising temperature in the winter is harmful to agricul-
ture. The negative impact of rising winter temperature is
even more severe with higher levels of rainfall (Figure 1a).
Spring temperatures below 24◦C are harmful. Further
increases in spring temperature aremore beneficial as long
as there is a low level of rainfall for plant pollination (Fig-
ure 1b). Rising summer temperature is expected to cause
losses. The likely negative impacts of a hotter summer are
mitigated by a high level of rainfall of 350 mm/month
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NGUYEN and SCRIMGEOUR 45

TABLE 3 The Hsiao estimates of step 1

Coef. Std. Err.
hh_size .054*** .010
head_sex −.012 .070
head_edu .010** .004
head_age −.002 .002
no_plots .016*** .006
log_farm_size −.497*** .035
irrigation .198*** .040
extension_contact .021*** .005
wage .000*** .000
log_population .141* .074
Observations 7539
Number of panel_id 2340

***p < .01,
**p < .05,
*p < .1. Standard errors are clustered at household level.

TABLE 4 Hypothesis testing

Null hypothesis

Variable on which its
coefficient(s) is (are)
tested

Value to be
tested

F-test
value P-value Decision

Homogenous market
shocks across regions

Interactions between time
and regional dummies

Jointly equal 3.45 .000 Reject

No climate interactions Interactions between
seasonal temperatures
and precipitations

Jointly equal zero 9.52 .000 Reject

(Figure 1c). Agricultural income exhibits an inverse U-
shape relationshipwith autumn temperature. High precip-
itation of 350 mm/month is expected to maintain the pos-
itive marginal impact of rising autumn temperature (Fig-
ure 1d). These findings of beneficial impacts of precipita-
tion in seasons with high temperatures are in line with
the farm-level findings by Fezzi and Bateman (2015) for
Great Britain. Ignoring climate interactions severely biases
our climate impacts. Comparing Models (1) and (3) gives a
sense of omitted climate interaction. The estimates for sea-
sonal temperatures and precipitations are much smaller in
magnitude in Model (3) indicating that the estimated cli-
mate impacts hide their nature due to the inseparability of
temperature and precipitation.
The inclusion of square terms, and interactions between

climate variables makes each coefficient in Table 5 no
longer represent the true marginal effect of each variable.
We derive the averagemarginal effects of seasonal climates
using Equations (10) and (11) for Model (1) reported in
Table 5. Vietnam is characterized by diverse climatic condi-
tions and topology. We are interested in how the marginal
effects vary across regions in order to understand hownon-
marginal changes in climatic conditions will likely affect

agriculture. Table 6 summarizes the estimated marginal
effects of a one-unit change in seasonal temperatures and
precipitations across seven regions. We do not sum across
seasons because it does not make sense to assume uniform
changes in climate patterns in the whole year.
Table 6 also indicates that Vietnamese agriculture is less

sensitive to precipitation than to temperature. Increases in
winter precipitation are associatedwith losses to thewhole
Northern region and the Southern Central with net losses
ranging from .039% to .1%. More precipitation in spring, in
contrast, is associated with losses to the Central Highlands
and the Mekong River delta. Because these two regions
are the most important producers of coffee, fruit and other
perennial crops, rising spring rainfall is harmful to plant
pollination. Although increases in summer precipitation
are beneficial, the estimated impact is significant for the
Central Highlands. In the autumn when precipitation is
high (as shown in Table 2), further increases in rainfall are
likely to cause losses to the Northern region where annual
crops are grown. The estimated impacts are positive and
statistically significant for the Southern Central and the
Central Highlands where irrigation coverage is relatively
limited.
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46 NGUYEN and SCRIMGEOUR

TABLE 5 Hsiao estimates of step 2

(1) (2) (3)

Variables

Heterogeneous market
shocks across regions,
climate interactions

Homogeneous market
shocks across regions,
climate interactions

Heterogeneous market
shocks across regions, no
climate interactions

Winter_tem −10.163*** −10.242*** −4.216***

Winter_tem square .225*** .229*** .097***

Spring_tem 9.901*** 9.615*** 5.083**

Spring_tem square −.168*** −.161*** −.096**

Summer_tem −10.134*** −10.932*** −6.854***

Summer_tem square .194*** .209*** .127***

Autumn_tem 23.510*** 25.201*** 8.918***

Autumn_tem square −.471*** −.513*** −.192***

Winter_pre −.261*** −.228*** −.032*

Winter_pre square −.001*** −.001*** .000
Spring_pre .235*** .270*** −.043*

Spring_pre square −.000 −.000 .000
Summer_pre .133*** .121*** .026***

Summer_pre square −.000 −.000 −.000**

Autumn_pre .057 .023 −.041***

Autumn_pre square .000*** .000*** .000***

Winter_tem * Winter_pre .014*** .012***

Spring_tem * Spring_pre −.008*** −.010***

Summer_tem * Summer_pre −.004*** −.004***

Autumn_tem * Autumn_pre −.005*** −.003*

Elevation −.002* −.002 −.000
Constant −186.041*** −189.743*** −27.634**

Time dummies Yes Yes Yes
Regional dummies Yes Yes Yes
Time * regional dummies Yes No Yes
observations 8356 8356 8356
R-squared .100 .089 .095

***p < .01,
**p < .05,
*p < .1.

Rising winter temperature is likely to cause losses. As
depicted in Figure 1a, a 1◦C increase in winter tempera-
ture is associated with losses ranging from .25% to 2.6%
for most regions. Figure 1b indicates the optimal spring
temperature is 28◦C. Because the current spring temper-
ature in most regions, except the Mekong River delta, is
below this optimal level, a 1◦C increase in spring tem-
perature is likely to be beneficial for most regions, with
net surpluses ranging from .5% to 1.3%. The Northwest
and the Central Highlands with cool summer climates
are expected to suffer from hotter summers. The opti-
mal autumn temperature is 24◦C, as shown in Figure 1d.
Because the current autumn temperature is above this
level, a warmer autumn is likely to be associated with
losses to the Southern Central and the Mekong River

delta, with the Mekong River being the most severely
affected.

6 CLIMATE IMPACT SIMULATION

In the long term, Vietnam is expected to experience non-
marginal changes in climate patterns. Changes in tempera-
ture and rainfall are not expected to be uniform across sea-
sons and across regions (Ministry ofNatural Resources and
Environment, 2009). Temperature is projected to increase
by .4◦C–3.2◦C between 2030 and 2100. Autumn andwinter
temperatures are projected to increase faster than those in
spring and summer. The Northern region will experience
faster increases in seasonal temperatures. Regional and
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NGUYEN and SCRIMGEOUR 47

F IGURE 1 Interactions between temperatures and precipitations [Color figure can be viewed at wileyonlinelibrary.com]

national averages of precipitation are projected to increase
but with different patterns for seasons. Therefore, it is
important to measure how these non-marginal changes in
climatic conditionswill affect Vietnamese agriculture so as
to propose adaptation policy.
Vietnam has issued and implemented several

mitigation-related policies and programs covering the
main sources of greenhouse emission including energy,
agriculture, land use, land-use change and forestry, waste
management, and industrial processes. The updated
version of Vietnam Nationally Determined Contributions
(NDCs) submitted in 2020 stated the goal to reduce total
emission by 27% by 2030 compared to the business-as-
usual scenario. Agriculture is one of the main sources of
emission accounting for 35.8% of total national emission
(Ministry of Natural Resources and Environment, 2014).
However, the current NDCs indicate little contribution by
Vietnamese agriculture while the agricultural pathways
focus mainly on crop choice, land-use change, and waste
management (UNFCCC, 2020). Therefore, we assume no
significant changes in future technology will change the
productivity of the studied crops. Rather, this simulation

is an effort to measure how Vietnamese agriculture is
likely to be affected by the projected climate change.
The conventional approach to simulating climate

change effects is using the estimated marginal effects
and the predicted climate changes (Mendelsohn et al.,
1994; Schlenker et al., 2005; Seo et al., 2005; Trinh,
2018; Wang et al., 2009; among others). Because the
marginal effects depend on the values of independent
variables (Wooldridge, 2012, p. 591), say climate, then
these marginal effects do not represent precisely the
relationships between agricultural income and climatic
conditions when future climate values are not within
the observed range of values. In addition, nonlinearity in
the production function and climate interactions that are
not apparent in the historical range of climate data may
change the relationship between the dependent variable
and climates (Blanc & Reilly, 2017).
We pay special attention to the prediction of the depen-

dent variable in logarithm form. A consistent estimator
for predicting values from a regression on the log form of
a dependent variable takes three steps (Wooldridge, 2012,
p. 213):
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48 NGUYEN and SCRIMGEOUR

TABLE 6 Marginal effects of seasonal climates

% change in net income per m2 per ◦C
Region Winter_tem Spring_tem Summer_tem Autumn_tem
Red River delta −2.005*** 1.059*** −.194 −.341
Northeast −2.206*** 1.219*** −.496 .129
Northwest −2.632*** 1.305*** −1.769*** 2.320***

Northern Central −1.379*** 1.058*** .160 −.494
Southern Central .899** .702** .254 −1.919***

Central Highlands −.251 .567** −1.631*** .904
Mekong River delta 1.822*** −.458 −.105 −3.286***

% change in net income per m2 per mm/month
Winter_pre Spring_pre Summer_pre Autumn_pre

Red River delta −.045*** −.008 −.004 −.003
Northeast −.058*** −.005 .000 −.002
Northwest −.067*** −.006 .007 −.013
Northern Central −.039** −.003 .001 .009
Southern Central −.100*** −.004 .004 .072***

Central Highlands .010 −.023*** .018*** .022***

Mekong River delta .074** −.041*** .003 .004

***p < .01,
**p < .05,
*p < .1.

TABLE 7 Predicted changes in crop income under medium climate change scenario

2030 2050 2100

Region
Current value
(VND/m2)

Predicted value
(VND/m2) % change Std. Dev. % change Std. Dev. % change Std. Dev.

Red River delta 3,831 3,510 −.029 .608 −.078 1.509 −.146 3.395
Northeast 3,007 3,776 −.105 .185 −.273 .472 −.555 .946
Northwest 1,955 1,853 −.498 .834 −1.316 2.195 −2.672 4.441
Northern Central 2,449 2,343 −.036 .405 −.102 1.093 −.227 2.176
Southern Central 2,610 2,475 −.021 .616 −.052 1.638 −.108 3.394
Central Highlands 5,088 4,769 −.088 .126 −.225 .303 −.452 .587
South 2,970 2,485 −.100 .527 −.274 1.245 −.632 2.067
Whole country 3,169 3,081 −.120 .581 −.319 1.497 −.673 3.093
(Nation-wide impacts of climate change are averaged across regions using agricultural land as weights)

First, we run the regression of log values of crop income
which are time-mean residuals obtained fromEquation (7)
on explanatory variables to obtain the predicted log values
of the dependent variable and residuals using Equation (9).
Second, the mean of the exponentiated residuals is cal-

culated and used as the adjustment factor to scale up the
exponentiated predicted log values.
Third, the original values of crop income are regressed

on the exponentiated scaled-up predicted log values with
no constant.
We replicate these steps for the prediction of crop

income for: (1) the baseline climate under the assumption

that there will be no future changes in climatic conditions
to obtain predicted values �̂�0 for each household; and (2)
for the years 2030, 2050, 2100 under the climate change sce-
narioswhile other control variables remain unchanged, �̂�1.
The predicted impacts of climate changes on agricultural
productivity are derived by subtracting the predicted val-
ues �̂�1 from the predicted values �̂�0. Table 7 presents the
estimated results while Figure 2 visualizes the predicted
changes in net crop income for regions in the period 2030–
2100.
Previous Ricardian analyses present a mixed picture

of climate change impacts across continents. European
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NGUYEN and SCRIMGEOUR 49

F IGURE 2 Percentage change in net income predicted by medium emission scenario [Color figure can be viewed at
wileyonlinelibrary.com]

agriculture is more sensitive to climate change than Amer-
ican agriculture (Van Passel et al., 2017). While Southern
European countries are expected to be vulnerable to the
projected climate change, Northern Europe is expected to
benefit (Van Passel et al., 2017). Maddison et al. (2007)
showed that African countries are likely to suffer from
future climate change but the estimated impacts vary by
country. Ethiopia and SouthAfrica are hardly affectedwith
mild losses ranging from 1.3% to 3% by 2050. Our simula-
tion for Vietnam indicates that Vietnam is likely not to be
affected by future changes in climate normal, with aver-
age losses ranging from .1% to .6% between 2030 and 2100.
Given the assumption of no future technology change in
agriculture, the impactsmight end up being even smaller if
future technology is introduced into agriculture. This find-
ing is contrary to the simulation by Trinh (2018) which
presents huge losses toVietnamese agriculture. In addition
to potential errors pertaining to the simulationmethod, the
overstated climate impacts by Trinh (2018) are attributable
to the failure to capture climate interactions and heteroge-
neous seasonal and regional climates.
Figure 2 visualizes the distribution of changes in net

agricultural income by region between 2030 and 2100.
Among the regions, the Central Highlands with current
cool climate is expected to be the most affected by future
climate changes. In the short term, the projected cli-
mate change in 2030 is likely to cause losses of .5%–1%
to income in the region. In the long term when the pro-

jected increases in temperature and declines in precipita-
tion are likely to result in 2%–3% losses in income. The
Mekong River delta and the Northwest are expected to
experience marginal losses of .5%–1%. However, the Red
River delta where irrigation covers more than 90% of the
cropping area is hardly affected by future changes in cli-
mate normal.

7 CONCLUSION

This panel Ricardian analysis measures the sensitivity of
Vietnamese agriculture to climate change using the Hsiao-
two stepmethod on a panel of 10 years.We tested for poten-
tial confounding effects of unobserved time-varying factors
in the model. The results indicate that our climate esti-
mates are free from unobserved time-varying confounders.
Most previous panel Ricardian analyses assumed global
price changes to be common shocks to all households.
However, our article shows that market shocks have
variable effects on regions growing different selections
of crops. While ignoring heterogeneous price feedbacks
across regions produces biases to climate estimates, the
likely consequences of omitting climate interaction are
even more severe.
Empirical evidence from this panel Ricardian analysis

suggests that farms located at higher altitudes are less pro-
ductive. Rising population puts pressure on the efficiency
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50 NGUYEN and SCRIMGEOUR

of land use. The results confirm the inverse relationship
between landholdings and agricultural productivity,which
is in line with findings from Barrett et al. (2010) and Tran
and Vu (2019). The Ricardian results highlight the nonlin-
ear, seasonal role of changing temperature and precipita-
tion. Increases in winter, summer, and autumn tempera-
tures are harmful to agriculture, while the opposite is true
for spring temperature. More rainfall in winter and spring
is likely to reduce agricultural income, while increases in
precipitation in the summer and autumn are predicted
to benefit agriculture. The simulation indicates marginal
regional losses ranging from .02% to 2.6%between 2030 and
2100. Regions currentlywith cool climates such as theCen-
tral Highlands and the Northwest are likely to experience
above-average losses. The Red River delta is shown to be
minimally affected in the long run. Consequently, the pro-
jected changes in long-term temperature and precipitation
should not be a major concern.
Our analysis is an advance on prior research. However,

there are opportunities for further research to progress
understanding.We based the simulation of climate change
impact on the hypothesis that Vietnam farming systems
remain unchanged in the future. Therefore, our estimated
impacts of climate change do not capture future techni-
cal changes to either crops or farming techniques. Fur-
ther, although we had data on agricultural wages at the
commune level, we did not use market wage to evalu-
ate labor cost due to the concern over differentiated labor
costs between households who hire in and those who hire
out labor. Hence, the estimated net income was not solely
a return to land. Finally, consistent with most Ricardian
analyses, this study implicitly assumes farmers will adapt
by crop switching in the changing climate. Future research
could investigate these issues and how responsive the Viet-
nam agricultural system is to changing climate. Investigat-
ing the changing allocation of landwould facilitate a better
understanding of climate impacts and their implications
for policy.

ACKNOWLEDGMENTS
The authors would like to thank the editor – Professor
Awudu Abdulai, and two anonymous reviewers for their
helpful comments and relevant suggestions that helped us
improve the quality of this article.

REFERENCES
Abdulai, A. (2018). Simon Brand Memorial Address: The challenges
and adaptation to climate change by farmers in Sub-Saharan
Africa. Agrekon, 57(1), 28–39. https://doi.org/10.1080/03031853.
2018.1440246.

Adams, R. (1999). On the search for the correct economic assessment
method. Climatic Change, 41(3), 363–370. https://doi.org/10.1023/
A:1005434215112.

Antle, J. M., & Stöckle, C. O. (2017). Climate impacts on agricul-
ture: Insights from agronomic-economic analysis. Review of Envi-
ronmental Economics and Policy, 11(2), 299–318. https://doi.org/10.
1093/reep/rex012.

Barrett, C. B., Bellemare, M. F., & Hou, J. Y. (2010). Reconsidering
conventional explanations of the inverse productivity–size rela-
tionship.World Development, 38(1), 88–97. https://doi.org/10.1016/
j.worlddev.2009.06.002.

Blanc, E., & Reilly, J. (2017). Approaches to assessing climate change
impacts on agriculture: An overview of the debate. Review of Envi-
ronmental Economics and Policy, 11(2), 247–257. https://doi.org/10.
1093/reep/rex011.

Blanc, E., & Schlenker, W. (2017). The use of panel models in assess-
ments of climate impacts on agriculture. Review of Environmental
Economics and Policy, 11(2), 258–279.

Bradshaw, B., Dolan, H., & Smit, B. (2004). Farm-level adaptation to
climatic variability and change: Crop diversification in the Cana-
dian prairies. Climatic Change, 67(1), 119–141. https://doi.org/10.
1007/s10584-004-0710-z.

Criddle, R. S., Smith, B.N.,&Hansen, L.D. (1997). A respiration based
description of plant growth rate responses to temperature. Planta,
201(4), 441–445. https://doi.org/10.1007/s004250050087.

Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D., & Yan, J. (2009).
The impact of sea level rise on developing countries: A compar-
ative analysis. Climatic Change, 93(3–4), 379–388. https://doi.org/
10.1007/s10584-008-9499-5.

Deschenes, O., &Greenstone,M. (2007). The economic impacts of cli-
mate change: Evidence from agricultural output and random fluc-
tuations in weather. American Economic Review, 97(1), 354–385.

Deschênes, O., & Greenstone, M. (2012). The economic impacts of
climate change: Evidence from agricultural output and random
fluctuations inweather: Reply.American Economic Review, 102(7),
3761–3773.

Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum,
K.C., Oleseng, J. E., van Ittersum,M.K., Janssen, S., Rivington,M.,
Semenov,M. A.,Wallach, D., Porterm, J. R., Stewart, D., Verhagen,
J., Gaiser, T., Palosuo, T., Tao, F., Nendel, C., . . . Asseng, S. (2014).
Crop modelling for integrated assessment of risk to food produc-
tion from climate change. Environmental Modelling and Software,
72, 287–303.

Feder, G. (1985). The relation between farm size and farm produc-
tivity: The role of family labor, supervision and credit constraints.
Journal of Development Economics, 18(2–3), 297–313.

Fezzi, C., & Bateman, I. (2015). The impact of climate change on agri-
culture: Nonlinear effects and aggregation bias in Ricardian mod-
els of farmland values. Journal of the Association of Environmen-
tal and Resource Economists, 2(1), 57–92. https://doi.org/10.1086/
680257.

Fick, S. E., &Hijmans, R. J. (2017).WorldClim2:New 1-kmspatial res-
olution climate surfaces for global land areas. International Jour-
nal of Climatology, 37(12), 4302–4315.

Fleischer, A., Mendelsohn, R., & Dinar, A. (2011). Bundling agricul-
tural technologies to adapt to climate change. Technological Fore-
casting and Social Change, 78(6), 982–990.

Haile, M. G., Kalkuhl, M., & von Braun, J. (2016). Worldwide acreage
and yield response to international price change and volatility:
A dynamic panel data analysis for wheat, rice, corn, and soy-
beans. American Journal of Agricultural Economics, 98(1), 172–
190.

 15740862, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/agec.12677 by U

niversity O
f O

slo, W
iley O

nline L
ibrary on [22/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1080/03031853.2018.1440246
https://doi.org/10.1080/03031853.2018.1440246
https://doi.org/10.1023/A:1005434215112
https://doi.org/10.1023/A:1005434215112
https://doi.org/10.1093/reep/rex012
https://doi.org/10.1093/reep/rex012
https://doi.org/10.1016/j.worlddev.2009.06.002
https://doi.org/10.1016/j.worlddev.2009.06.002
https://doi.org/10.1093/reep/rex011
https://doi.org/10.1093/reep/rex011
https://doi.org/10.1007/s10584-004-0710-z
https://doi.org/10.1007/s10584-004-0710-z
https://doi.org/10.1007/s004250050087
https://doi.org/10.1007/s10584-008-9499-5
https://doi.org/10.1007/s10584-008-9499-5
https://doi.org/10.1086/680257
https://doi.org/10.1086/680257


NGUYEN and SCRIMGEOUR 51

Helfand, S. M., & Taylor, M. P. H. (2020). The inverse relationship
between farm size and productivity: Refocusing the debate. Food
Policy, 99. https://doi.org/10.1016/j.foodpol.2020.101977.

Körner, C. (2006). Significance of temperature in plant life. In (J. I. L.
Morison&M.D.Morecropt Eds.),Plant growth and climate change
(pp. 48–69): Blackwell Publishing Ltd.

Maddison, D.,Manley,M., &Kurukulasuriya, P. (2007).The impact of
climate change on African agriculture: A Ricardian approach. The
World Bank. https://EconPapers.repec.org/RePEc:wbk:wbrwps:
4306

Mall, R., Lal, M., Bhatia, V., Rathore, L., & Singh, R. (2004). Miti-
gating climate change impact on soybean productivity in India:
A simulation study. Agricultural and Forest Meteorology, 121(1–2),
113–125.

Massetti, E., & Mendelsohn, R. (2011). Estimating Ricardian models
with panel data. Climate Change Economics, 2(04), 301–319.

Mendelsohn, R., Nordhaus, W. D., & Shaw, D. (1994). The impact of
global warming on agriculture: A Ricardian analysis. American
Economic Review, 84(4), 753–771.

Mendelsohn, R. O., & Massetti, E. (2017). The use of cross-sectional
analysis to measure climate impacts on agriculture: Theory and
evidence. Review of Environmental Economics and Policy, 11(2),
280–298.

Ministry of Natural Resources and Environment. (2009). Climate
change, sea level rise scenarios for Vietnam. Hanoi, Vietnam.

Ministry of Natural Resources and Environment. (2014). The initial
biennial updated report of Vietnam to The United Nations frame-
work convention on climate change. Hanoi, Vietnam.

Monteith, J. L. (1977). Climate and the efficiency of crop production in
Britain. Philosophical Transactions of the Royal Society of London.
B, Biological Sciences, 281(980), 277–294.

Morison, J. I. (1996). Climate change and crop growth.Environmental
Management and Health, 7(2), 24–27.

Nguyen,H.Q. (2017). Analyzing the economies of crop diversification
in rural Vietnam using an input distance function. Agricultural
Systems, 153, 148–156. https://doi.org/10.1016/j.agsy.2017.01.024.

Nguyen, T. T., Nguyen, L. D., Lippe, R. S., & Grote, U. (2017). Deter-
minants of farmers’ land use decision-making: Comparative evi-
dence from Thailand and Vietnam. World Development, 89, 199–
213. https://doi.org/10.1016/j.worlddev.2016.08.010.

Niroula, G. S., & Thapa, G. B. (2005). Impacts and causes of land
fragmentation, and lessons learned from land consolidation in
South Asia. Land Use Policy, 22(4), 358–372. https://doi.org/10.
1016/j.landusepol.2004.10.001.

Rezaei, E. E., Gaiser, T., Siebert, S., & Ewert, F. (2015). Adaptation of
crop production to climate change by crop substitution.Mitigation
and Adaptation Strategies for Global Change, 20(7), 1155–1174.

Romm, J. (2018). Climate change: What everyone needs to know (2nd
ed.). New York: Oxford University Press.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C.,
Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N.,
Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest,
E., Yang, H., Jones, J. W. (2014). Assessing agricultural risks of cli-
mate change in the 21st century in a global gridded crop model
intercomparison. Proceedings of the National Academy of Sciences,
111(9), 3268–3273.

Schlenker, W., Michael Hanemann, W., & Fisher, A. C. (2005). Will
U.S. agriculture really benefit from global warming? Accounting

for irrigation in the hedonic approach.AmericanEconomicReview,
95(1), 395–406. https://doi.org/10.1257/0002828053828455.

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects
indicate severe damages to US crop yields under climate change.
Proceedings of the National Academy of Sciences, 106(37), 15594–
15598.

Seo, S., Mendelsohn, R., Dinar, A., Hassan, R., & Kurukulasuriya, P.
(2009). A Ricardian analysis of the distribution of climate change
impacts on agriculture across agro-ecological zones in Africa.
Environmental and Resource Economics, 43(3), 313–332. https://
doi.org/10.1007/s10640-009-9270-z.

Seo, S. N., & Mendelsohn, R. (2008). An analysis of crop choice:
Adapting to climate change in South American farms. Ecological
Economics, 67(1), 109–116.

Seo, S.N.,Mendelsohn,R.,&Munasinghe,M. (2005). Climate change
and agriculture in Sri Lanka: A Ricardian valuation. Environment
and Development Economics, 10(5), 581–596.

Shahzad, M. F., & Abdulai, A. (2021). The heterogeneous effects of
adoption of climate-smart agriculture on household welfare in
Pakistan. Applied Economics, 53(9), 1013–1038. https://doi.org/10.
1080/00036846.2020.1820445.

Tran, T. Q., & Vu, H. V. (2019). Land fragmentation and household
income: First evidence from rural Vietnam. Land Use Policy, 89,
1–8. https://doi.org/10.1016/j.landusepol.2019.104247.

Trinh, T. A. (2018). The impact of climate change on agricul-
ture: Findings from households in Vietnam. Environmental and
Resource Economics, 71(4), 1–25. https://doi.org/10.1007/s10640-
017-0189-5.

UNFCCC. (2020). Updated nationally determined contri-
bution (NDC). https://www4.unfccc.int/sites/ndcstaging/
PublishedDocuments/Viet%20Nam%20First/Viet%20Nam_
NDC_2020_Eng.pdf

Van Passel, S., Massetti, E., & Mendelsohn, R. (2017). A Ricardian
analysis of the impact of climate change on European agriculture.
Environmental and Resource Economics, 67(4), 725–760. https://
doi.org/10.1007/s10640-016-0001-y.

Wang, J., Mendelsohn, R., Dinar, A., Huang, J., Rozelle, S., & Zhang,
L. (2009). The impact of climate change on China’s agriculture.
Agricultural Economics, 40(3), 323–337. https://doi.org/10.1111/j.
1574-0862.2009.00379.x.

Wooldridge, J. M. (2012). Introductory econometrics: A modern
approach (5th ed.). Canada: Cengage Learning.

SUPPORT ING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Chau Trinh, N., &
Scrimgeour, F. Measuring the impact of climate
change on agriculture in Vietnam: A panel
Ricardian analysis. Agricultural Economics.
2022:53;37–51. https://doi.org/10.1111/agec.12677

 15740862, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/agec.12677 by U

niversity O
f O

slo, W
iley O

nline L
ibrary on [22/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.foodpol.2020.101977
https://EconPapers.repec.org/RePEc:wbk:wbrwps:4306
https://EconPapers.repec.org/RePEc:wbk:wbrwps:4306
https://doi.org/10.1016/j.agsy.2017.01.024
https://doi.org/10.1016/j.worlddev.2016.08.010
https://doi.org/10.1016/j.landusepol.2004.10.001
https://doi.org/10.1016/j.landusepol.2004.10.001
https://doi.org/10.1257/0002828053828455
https://doi.org/10.1007/s10640-009-9270-z
https://doi.org/10.1007/s10640-009-9270-z
https://doi.org/10.1080/00036846.2020.1820445
https://doi.org/10.1080/00036846.2020.1820445
https://doi.org/10.1016/j.landusepol.2019.104247
https://doi.org/10.1007/s10640-017-0189-5
https://doi.org/10.1007/s10640-017-0189-5
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Viet%20Nam%20First/Viet%20Nam_NDC_2020_Eng.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Viet%20Nam%20First/Viet%20Nam_NDC_2020_Eng.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Viet%20Nam%20First/Viet%20Nam_NDC_2020_Eng.pdf
https://doi.org/10.1007/s10640-016-0001-y
https://doi.org/10.1007/s10640-016-0001-y
https://doi.org/10.1111/j.1574-0862.2009.00379.x
https://doi.org/10.1111/j.1574-0862.2009.00379.x
https://doi.org/10.1111/agec.12677

	Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis
	Abstract
	1 | INTRODUCTION
	2 | LITERATURE REVIEW
	3 | RESEARCH METHODOLOGY
	3.1 | The Ricardian model for valuing economic impact of climate change
	3.2 | The two-step Hsiao method for the panel Ricardian model
	3.3 | Methodology considerations

	4 | EMPIRICAL MODEL AND DATA
	4.1 | Empirical Ricardian model
	4.2 | Data

	5 | ESTIMATION RESULTS
	5.1 | Hsiao estimation of step 1-Effects of time-varying factors on agricultural productivity
	5.2 | Hsiao estimation of step 2-Impacts of climate and other time-invariant controls

	6 | CLIMATE IMPACT SIMULATION
	7 | CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	SUPPORTING INFORMATION


